Skip to contents

The function takes a completed run-off triangle provided either by some classical parametric reserving technique (ODP model, Mack model, or Tweedie model) or some functional-based alternative (PARALLAX, REACT, or MACRAME) and estimates the overall reserve distribution in terms of the permutation bootstrap approach proposed in Maciak, Mizera, and Pešta (2022).

Usage

permuteReserve(
  object,
  B = 500,
  std = TRUE,
  quantile = 0.995,
  adjustMC = TRUE,
  outputAll = TRUE,
  pb = TRUE
)

Arguments

object

an object which is the result of some functional-based reserving method implemented in the ProfileLadder package (functions parallelReserve() and mcReserve() in particular) or some parametric approach from the ChainLadder package (specifically the functions chainladder(), glmReserve(), tweedieReserve(), and MackChainLadder()). The following object's classes are allowed: profileLadder, ChainLadder, glmReserve, tweedieReserve, and MackChainLadder.

B

number of the bootstrap permutations to be performed (by DEFAULT the number of permutations is set to B = 500)

std

logical to indicate whether the run-off triangle should be standardized by the first column increments (TRUE by DEFAULT) or not (std = FALSE).For more details about the triangle standardization, see Maciak, Mizera, and Pešta (2022)

quantile

quantile level for the BootVar. characteristic of the bootstrapped distribution (the DEFAULT choice quantile = 0.995 is explicitly required by the Solvency II principle used by actuaries in practice)

adjustMC

logical (TRUE by DEFAULT) to indicate whether the Markov chain states and the corresponding breaks should be adjusted for every bootstrap permutation or the same set of Markov states and breaks is used for each permuted run-off triangle (only applies if the input object is an output of the MACRAME algorithm—the function mcReserve())

outputAll

logical to indicate whether whole permuted triangles should be stored and provided in the output (outputAll = TRUE set by default), or just the main summary characteristics are given instead (outputAll = FALSE)

pb

logical (TRUE by DEFAULT) to indicate whether a progress bar for bootstrap resampling should be used or not (required the R package pbapply) to be installed

Value

An object of the class permutedReserve which is a list with the following elements:

eSummary

numeric vector with four values summarizing the estimated reserve: Paid amount (i.e., the sum of the last observed diagonal in the given cumulative run-off triangle); Estimated ultimate (i.e., the sum of the last column in the completed cumulative triangle); Estimated reserve (i.e., the sum of the last column in the completed cumulative triangle minus the sum of the last observed diagonal); True reserve if a completed (true) run-off triangle is available

pSummary

numeric vector with four values summarizing the overall reserve distribution: Boot.Mean gives the verage of B permutation bootstrap reserves; Std.Er. provides the corresponding standard error of B permutation bootstrap reserves; The value of BootCov% stands for a percentage proportion between the standard error and the average; Finally, BootVar.995 provides the estimated 0.995 quantile (by DEFAULT) of the bootstrap reserve distribution (for quantile = 0.995 and, otherwise, it is modified acordingly) given relatively with respect to the permutation bootstrapped mean reserve

pReserves

a numeric vector of the length B with the estimated (permuted) reserves for each row-permuted run-off triangle in B independent Monte Carlo simulation runs

pUltimates

A matrix of the dimensions B x n (provided in the output if outputAll = TRUE) where n stands for the number of the origin/development periods and B is the number os simulated ultimate payments –the last column in the completed run-off triangle.

pLatest

A matrix of the dimensions B x n (provided in the output if outputAll = TRUE) where n again stands for the number of the origin/development periods and B is the number of simulated incremental diagonals

pLatestCum

A matrix of the dimensions B x n (provided in the output if outputAll = TRUE) where n is the number of the origin/development periods and B stands for the number of simulated cumulative diagonals

pFirst

A matrix of the dimension B x n (provided in the output if outputAll = TRUE) where n stands for the number of the origin/development periods and B is the number of simulated first payment columns (all columns are identical for std = TRUE)

Triangle

The input run-off triangle

FullTriangle

The completed run-off triangle by using one of the PARALLAX, REACT, or MACRAME estimation method

trueComplete

The true complete run-off triangle (if available) and NA value otherwise

info

a numeric vector summarizing the bootstrap computational efficiency: In particular, the OS/Architecture type, the number of permutations (B), the input run-off triangle dimension (n) and the computation time needed for the permutation bootstrap calculations

References

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. ASTIN Bulletin, 52(2), 449-482. DOI:10.1017/asb.2022.4

European Parliament and Council (2009). Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency II). Official Journal of the European Union, 1–155.
https://data.europa.eu/eli/dir/2009/138/oj

Examples

## REACT algorithm and the permutation bootstrap reserve 
data(CameronMutual)
output <- parallelReserve(CameronMutual, method = "react")
summary(permuteReserve(output, B = 100))
#> 
  |                                           | 0 % ~calculating  
  |>                                          | 1 % ~00s          
  |>                                          | 2 % ~00s          
  |>>                                         | 3 % ~00s          
  |>>                                         | 4 % ~00s          
  |>>>                                        | 5 % ~00s          
  |>>>                                        | 6 % ~00s          
  |>>>>                                       | 7 % ~00s          
  |>>>>                                       | 8 % ~00s          
  |>>>>                                       | 9 % ~00s          
  |>>>>>                                      | 10% ~00s          
  |>>>>>                                      | 11% ~00s          
  |>>>>>>                                     | 12% ~00s          
  |>>>>>>                                     | 13% ~00s          
  |>>>>>>>                                    | 14% ~00s          
  |>>>>>>>                                    | 15% ~00s          
  |>>>>>>>                                    | 16% ~00s          
  |>>>>>>>>                                   | 17% ~00s          
  |>>>>>>>>                                   | 18% ~00s          
  |>>>>>>>>>                                  | 19% ~00s          
  |>>>>>>>>>                                  | 20% ~00s          
  |>>>>>>>>>>                                 | 21% ~00s          
  |>>>>>>>>>>                                 | 22% ~00s          
  |>>>>>>>>>>                                 | 23% ~00s          
  |>>>>>>>>>>>                                | 24% ~00s          
  |>>>>>>>>>>>                                | 25% ~00s          
  |>>>>>>>>>>>>                               | 26% ~00s          
  |>>>>>>>>>>>>                               | 27% ~00s          
  |>>>>>>>>>>>>>                              | 28% ~00s          
  |>>>>>>>>>>>>>                              | 29% ~00s          
  |>>>>>>>>>>>>>                              | 30% ~00s          
  |>>>>>>>>>>>>>>                             | 31% ~00s          
  |>>>>>>>>>>>>>>                             | 32% ~00s          
  |>>>>>>>>>>>>>>>                            | 33% ~00s          
  |>>>>>>>>>>>>>>>                            | 34% ~00s          
  |>>>>>>>>>>>>>>>>                           | 35% ~00s          
  |>>>>>>>>>>>>>>>>                           | 36% ~00s          
  |>>>>>>>>>>>>>>>>                           | 37% ~00s          
  |>>>>>>>>>>>>>>>>>                          | 38% ~00s          
  |>>>>>>>>>>>>>>>>>                          | 39% ~00s          
  |>>>>>>>>>>>>>>>>>>                         | 40% ~00s          
  |>>>>>>>>>>>>>>>>>>                         | 41% ~00s          
  |>>>>>>>>>>>>>>>>>>>                        | 42% ~00s          
  |>>>>>>>>>>>>>>>>>>>                        | 43% ~00s          
  |>>>>>>>>>>>>>>>>>>>                        | 44% ~00s          
  |>>>>>>>>>>>>>>>>>>>>                       | 45% ~00s          
  |>>>>>>>>>>>>>>>>>>>>                       | 46% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>                      | 47% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>                      | 48% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 49% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 50% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 51% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>                    | 52% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>                    | 53% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>                   | 54% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>                   | 55% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 56% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 57% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 58% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                 | 59% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                 | 60% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                | 61% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                | 62% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 63% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 64% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 65% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              | 66% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              | 67% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             | 68% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             | 69% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 70% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 71% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 72% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           | 73% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           | 74% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          | 75% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          | 76% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 77% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 78% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 79% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        | 80% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        | 81% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       | 82% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       | 83% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 84% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 85% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 86% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     | 87% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     | 88% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    | 89% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    | 90% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 91% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 92% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 93% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | 94% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | 95% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 96% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 97% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 98% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 99% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100% elapsed=00s  
#> REACT based reserve prediction (with B = 100 bootstrap permutations)
#>       First Latest Dev.To.Date Ultimate IBNR         S.E        CV
#> 2      5984  13113   1.0000000    13113    0    0.000000       NaN
#> 3      7452  15720   0.9997456    15724    4    3.680721 0.9201803
#> 4      7115  13872   0.9937675    13959   87   29.217040 0.3358280
#> 5      5753  11282   0.9912142    11382  100   88.362555 0.8836256
#> 6      3937   8757   0.9725677     9004  247  103.735962 0.4199837
#> 7      5127   9325   0.9528919     9786  461  115.944697 0.2515069
#> 8      5046   8984   0.9172963     9794  810  167.714923 0.2070555
#> 9      5129   8202   0.8210210     9990 1788  382.052755 0.2136760
#> 10     3689   3689   0.4314620     8550 4861  530.130235 0.1090579
#> total 49232  92944   0.9174942   101302 8358 1012.162229 0.1211010
#> 
#> Overall reserve distribution
#>      Boot.Mean        Std.Er.       BootCov%    BootVar.995 
#>   10332.684421    1012.162229       9.795733       1.236083 
#> 
#> The REACT predicted reserve represents the 1.98% quantile of the reserve distribution
#> Bootstrap simulated reserves beyond 2σ rule: 4 (out of 100)
#> 

## MACRAME algorithm with a pre-specified number of states using the same MC 
## states and the same break for each permuted run-off triangle
output <- mcReserve(CameronMutual, states = 5)
plot(permuteReserve(output, B = 100, adjustMC = FALSE))
#> 
  |                                           | 0 % ~calculating  
  |>                                          | 1 % ~01s          
  |>                                          | 2 % ~01s          
  |>>                                         | 3 % ~01s          
  |>>                                         | 4 % ~01s          
  |>>>                                        | 5 % ~01s          
  |>>>                                        | 6 % ~01s          
  |>>>>                                       | 7 % ~01s          
  |>>>>                                       | 8 % ~01s          
  |>>>>                                       | 9 % ~01s          
  |>>>>>                                      | 10% ~01s          
  |>>>>>                                      | 11% ~01s          
  |>>>>>>                                     | 12% ~01s          
  |>>>>>>                                     | 13% ~01s          
  |>>>>>>>                                    | 14% ~01s          
  |>>>>>>>                                    | 15% ~01s          
  |>>>>>>>                                    | 16% ~01s          
  |>>>>>>>>                                   | 17% ~01s          
  |>>>>>>>>                                   | 18% ~01s          
  |>>>>>>>>>                                  | 19% ~01s          
  |>>>>>>>>>                                  | 20% ~01s          
  |>>>>>>>>>>                                 | 21% ~01s          
  |>>>>>>>>>>                                 | 22% ~01s          
  |>>>>>>>>>>                                 | 23% ~01s          
  |>>>>>>>>>>>                                | 24% ~01s          
  |>>>>>>>>>>>                                | 25% ~00s          
  |>>>>>>>>>>>>                               | 26% ~00s          
  |>>>>>>>>>>>>                               | 27% ~00s          
  |>>>>>>>>>>>>>                              | 28% ~00s          
  |>>>>>>>>>>>>>                              | 29% ~00s          
  |>>>>>>>>>>>>>                              | 30% ~00s          
  |>>>>>>>>>>>>>>                             | 31% ~00s          
  |>>>>>>>>>>>>>>                             | 32% ~00s          
  |>>>>>>>>>>>>>>>                            | 33% ~00s          
  |>>>>>>>>>>>>>>>                            | 34% ~00s          
  |>>>>>>>>>>>>>>>>                           | 35% ~00s          
  |>>>>>>>>>>>>>>>>                           | 36% ~00s          
  |>>>>>>>>>>>>>>>>                           | 37% ~00s          
  |>>>>>>>>>>>>>>>>>                          | 38% ~00s          
  |>>>>>>>>>>>>>>>>>                          | 39% ~00s          
  |>>>>>>>>>>>>>>>>>>                         | 40% ~00s          
  |>>>>>>>>>>>>>>>>>>                         | 41% ~00s          
  |>>>>>>>>>>>>>>>>>>>                        | 42% ~00s          
  |>>>>>>>>>>>>>>>>>>>                        | 43% ~00s          
  |>>>>>>>>>>>>>>>>>>>                        | 44% ~00s          
  |>>>>>>>>>>>>>>>>>>>>                       | 45% ~00s          
  |>>>>>>>>>>>>>>>>>>>>                       | 46% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>                      | 47% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>                      | 48% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 49% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 50% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 51% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>                    | 52% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>                    | 53% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>                   | 54% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>                   | 55% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 56% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 57% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 58% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                 | 59% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                 | 60% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                | 61% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                | 62% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 63% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 64% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 65% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              | 66% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              | 67% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             | 68% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             | 69% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 70% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 71% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 72% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           | 73% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           | 74% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          | 75% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          | 76% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 77% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 78% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 79% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        | 80% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        | 81% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       | 82% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       | 83% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 84% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 85% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 86% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     | 87% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     | 88% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    | 89% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    | 90% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 91% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 92% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 93% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | 94% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | 95% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 96% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 97% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 98% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 99% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100% elapsed=01s  


## Permutation bootstrap applied to a completed run-off triangle 
## obtained by a parametric Over-dispersed Poisson model (from ChainLadder pkg)
library("ChainLadder")
#> 
#> Welcome to ChainLadder version 0.2.20
#> 
#> 
#> To cite package ‘ChainLadder’ in publications use:
#> 
#>   Gesmann M, Murphy D, Zhang Y, Carrato A, Wuthrich M, Concina F, Dal
#>   Moro E (2025). _ChainLadder: Statistical Methods and Models for
#>   Claims Reserving in General Insurance_. R package version 0.2.20,
#>   <https://mages.github.io/ChainLadder/>.
#> 
#> To suppress this message use:
#> suppressPackageStartupMessages(library(ChainLadder))
output <- permuteReserve(glmReserve(MW2008), B = 100)
#> 
  |                                           | 0 % ~calculating  
  |>                                          | 1 % ~03s          
  |>                                          | 2 % ~02s          
  |>>                                         | 3 % ~02s          
  |>>                                         | 4 % ~02s          
  |>>>                                        | 5 % ~02s          
  |>>>                                        | 6 % ~02s          
  |>>>>                                       | 7 % ~02s          
  |>>>>                                       | 8 % ~02s          
  |>>>>                                       | 9 % ~02s          
  |>>>>>                                      | 10% ~02s          
  |>>>>>                                      | 11% ~02s          
  |>>>>>>                                     | 12% ~02s          
  |>>>>>>                                     | 13% ~02s          
  |>>>>>>>                                    | 14% ~02s          
  |>>>>>>>                                    | 15% ~01s          
  |>>>>>>>                                    | 16% ~01s          
  |>>>>>>>>                                   | 17% ~01s          
  |>>>>>>>>                                   | 18% ~01s          
  |>>>>>>>>>                                  | 19% ~02s          
  |>>>>>>>>>                                  | 20% ~02s          
  |>>>>>>>>>>                                 | 21% ~02s          
  |>>>>>>>>>>                                 | 22% ~02s          
  |>>>>>>>>>>                                 | 23% ~02s          
  |>>>>>>>>>>>                                | 24% ~02s          
  |>>>>>>>>>>>                                | 25% ~01s          
  |>>>>>>>>>>>>                               | 26% ~01s          
  |>>>>>>>>>>>>                               | 27% ~01s          
  |>>>>>>>>>>>>>                              | 28% ~01s          
  |>>>>>>>>>>>>>                              | 29% ~01s          
  |>>>>>>>>>>>>>                              | 30% ~01s          
  |>>>>>>>>>>>>>>                             | 31% ~01s          
  |>>>>>>>>>>>>>>                             | 32% ~01s          
  |>>>>>>>>>>>>>>>                            | 33% ~01s          
  |>>>>>>>>>>>>>>>                            | 34% ~01s          
  |>>>>>>>>>>>>>>>>                           | 35% ~01s          
  |>>>>>>>>>>>>>>>>                           | 36% ~01s          
  |>>>>>>>>>>>>>>>>                           | 37% ~01s          
  |>>>>>>>>>>>>>>>>>                          | 38% ~01s          
  |>>>>>>>>>>>>>>>>>                          | 39% ~01s          
  |>>>>>>>>>>>>>>>>>>                         | 40% ~01s          
  |>>>>>>>>>>>>>>>>>>                         | 41% ~01s          
  |>>>>>>>>>>>>>>>>>>>                        | 42% ~01s          
  |>>>>>>>>>>>>>>>>>>>                        | 43% ~01s          
  |>>>>>>>>>>>>>>>>>>>                        | 44% ~01s          
  |>>>>>>>>>>>>>>>>>>>>                       | 45% ~01s          
  |>>>>>>>>>>>>>>>>>>>>                       | 46% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>                      | 47% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>                      | 48% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 49% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 50% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>                     | 51% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>                    | 52% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>                    | 53% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>                   | 54% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>                   | 55% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 56% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 57% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>                  | 58% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                 | 59% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>                 | 60% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                | 61% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>                | 62% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 63% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 64% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>               | 65% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              | 66% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>              | 67% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             | 68% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>             | 69% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 70% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 71% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>            | 72% ~01s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           | 73% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>           | 74% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          | 75% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>          | 76% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 77% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 78% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>         | 79% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        | 80% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>        | 81% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       | 82% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       | 83% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 84% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 85% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      | 86% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     | 87% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     | 88% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    | 89% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    | 90% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 91% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 92% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   | 93% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | 94% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  | 95% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 96% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 97% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 98% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 99% ~00s          
  |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100% elapsed=02s  
summary(output, triangle.summary = TRUE)
#> GLM based reserve prediction (with B = 100 bootstrap permutations)
#>          First   Latest Dev.To.Date Ultimate    IBNR        S.E         CV
#> 2      2350650  3902425   0.9988794  3906803    4378   140.9936 0.03220503
#> 3      2321885  3898825   0.9976083  3908172    9347   443.0090 0.04739585
#> 4      2171487  3548422   0.9920622  3576814   28392  1345.1651 0.04737831
#> 5      2140328  3585812   0.9858561  3637257   51445  3058.5049 0.05945194
#> 6      2290664  3641036   0.9702064  3752847  111811  5890.1219 0.05267927
#> 7      2148216  3428335   0.9482539  3615419  187084  7836.4438 0.04188730
#> 8      2143728  3158581   0.8846463  3570445  411864 17027.9803 0.04134370
#> 9      2144738  2144738   0.5993830  3578243 1433505 51954.1629 0.03624275
#> total 17711696 27308174   0.9242596 29546000 2237826 51067.0548 0.02281994
#> 
#> Overall reserve distribution
#>      Boot.Mean        Std.Er.       BootCov%    BootVar.995 
#>   2.303921e+06   5.106705e+04   2.216528e+00   1.044700e+00 
#> 
#> The GLM predicted reserve represents the 9.90% quantile of the reserve distribution
#> Bootstrap simulated reserves beyond 2σ rule: 2 (out of 100)
#> 
#> Summary of the permuted run-off triangles (First, Latest, Ultimate)
#>          Boot.Firsts (Std.Er) Boot.Latests  (Std.Er) Boot.Ultimates (Std.Err)
#> origin 1     2211603 79656.83      3680458 139362.50        3680458  139362.5
#> origin 2     2217691 80820.41      3715999 125662.90        3720168  125803.9
#> origin 3     2220180 87505.50      3720968 154863.22        3729914  155241.3
#> origin 4     2199783 73701.16      3598699 118049.24        3627510  119093.3
#> origin 5     2213400 82872.74      3684146 154483.83        3737109  156841.2
#> origin 6     2209434 76689.68      3519648 116799.45        3628234  120468.1
#> origin 7     2208494 76826.39      3523136 124364.90        3715827  130326.1
#> origin 8     2218190 84984.53      3269103 124524.71        3695581  140892.4
#> origin 9     2215506 77623.82      2215506  77623.82        3696783  129377.4
#> 



sidebar.html